

    
      
          
            
  
Bicycle Repair Man

BRM is a short way of rewriting python source with transformation of tokens.
It offers a high level interface for token transformation with automating
most of manual stuff.


Features


	On the fly token transformation


	Auto location padding for single line transformations


	Ways to patch standard tokenizer with custom tokens and capturing them


	Grammar Rules like pattern syntax for easy capturing






Installation

Install BRM by running:


pip install brm




or


pip install git+https://github.com/isidentical/BRM.git






Tutorials



	Let’s Build Our First Token Transformer
	Creating First Transformer











Contribute


	Issue Tracker: github.com/isidentical/brm/issues


	Source Code: github.com/isidentical/brm






Support

If you are having issues, please let us know.





          

      

      

    

  

    
      
          
            
  
Let’s Build Our First Token Transformer

BRM is about rewriting and transforming python sources.
It offers you to roundtrip back to what it was earlier by the power of
tokens and comfort of Transformer interfaces. This tutorial we are going
to focus on rewriting a square root character (√) transformer. We’ll handle
all forms of square root operation like √9 or √16.0 and then transform them
to <number> ** 0.5.


Creating First Transformer

A Transformer is a class that provides utilities and dispatching for tokens.
For an example you can create a class and do nothing, just listen what it gets.
Lets write one that listens numbers.

First of all you need to subclass TokenTransformer in order to add new
methods. Let’s do that

from brm import TokenTransformer

class NumberHandler(TokenTransformer):





For registering specific token types, you need to define a function with
visit_<token-type>. It is like the ast.NodeTransformer but instead of
nodes we use token types. You can get the name of all token types by checking
token module and it’s docs [https://docs.python.org/3.9/library/token.html].
Our token is NUMBER. If you want to see which tokens a python expression or
statement consists from you can do it in interactive shell by instantiating
TokenTransformer and calling quick_tokenize on it.

>>> import brm
>>> transformer = brm.TokenTransformer()
>>> transformer.quick_tokenize("1.0")
[TokenInfo(type=2 (NUMBER), string='1.0', start=(1, 0), end=(1, 3), line='1.0')]
>>> transformer.quick_tokenize("100")
[TokenInfo(type=2 (NUMBER), string='100', start=(1, 0), end=(1, 3), line='100')]
>>> pprint.pprint(transformer.quick_tokenize("100 + 100"))
[TokenInfo(type=2 (NUMBER), string='100', start=(1, 0), end=(1, 3), line='100 + 100'),
 TokenInfo(type=54 (OP), string='+', start=(1, 4), end=(1, 5), line='100 + 100'),
 TokenInfo(type=2 (NUMBER), string='100', start=(1, 6), end=(1, 9), line='100 + 100')]





Let’s add a visit_number method and see what happens to our NumberHandler when we
call it with some numbers.

def visit_number(self, number):
    print("is a number? (always yes)", number.type == token.NUMBER)
    print("what it contains?", number.string)
    print("where it starts?", "y_start={}, x_start={}".format(*number.start))
    print("where it end?", "y_end={}, x_end={}".format(*number.end))





After this definition, we are going to instantiate our NumberHandler and call transform
on it. transform method is responsible for everything related to source rewriting. It takes
python source as a string (like what you read from the python file) and then it registers new
tokens if they are available (like we are going to register our square root √ token in this step)
it continues with invoking transformer methods like the one we just created (visit_number), if there
are no defined transformer methods for that token, it calls dummy. You can probably implement something
like that to your subclass for watching undefined nodes.

def dummy(self, unknown_token):
    print("Unhandled token:", unknown_token)





Let’s test our visit_number and dummy out.

>>> number_handler = NumberHandler()
>>> number_handler.transform("2")
    is a number? (always yes) True
    what it contains? 2
    where it starts? y_start=1, x_start=0
    where it end? y_end=1, x_end=1
    Unhandled token: TokenInfo(type=4 (NEWLINE), string='', start=(1, 1), end=(1, 2), line='')
    Unhandled token: TokenInfo(type=0 (ENDMARKER), string='', start=(2, 0), end=(2, 0), line='')
'2'





It took "2" and returned "2", it also answered our questions. Now what?
What are those unhandled tokens? One of them is just a newline token, which its name states.
The other one is a marker token which indicates we reached end of input. We can actually check that
with token.ISEOF in our dummy function.

def dummy(self, unknown_token):
    if token.ISEOF(unknown_token.type):
        print("Reached EOF without a problem, congratz")
    else:
        print("Unhandled token:", unknown_token)

>>> number_handler = NumberHandler()
>>> number_handler.transform("2")
is a number? (always yes) True
what it contains? 2
which line it was taken 2
where it starts? y_start=1, x_start=0
where it end? y_end=1, x_end=1
Unhandled token: TokenInfo(type=4 (NEWLINE), string='', start=(1, 1), end=(1, 2), line='')
Reached EOF without a problem, congratz
'2'









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Bicycle Repair Man
        


        		
          Let’s Build Our First Token Transformer
          
            		
              Creating First Transformer
            


          


        


      


    
  

_static/plus.png





_static/comment-bright.png





_static/file.png





_static/ajax-loader.gif





_static/minus.png





_static/up-pressed.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





